Meta发布FACET数据集,用于评估AI公平性
来源:51CTO.COM
时间:2023-09-05 12:55:55 487浏览 收藏
积累知识,胜过积蓄金银!毕竟在科技周边开发的过程中,会遇到各种各样的问题,往往都是一些细节知识点还没有掌握好而导致的,因此基础知识点的积累是很重要的。下面本文《Meta发布FACET数据集,用于评估AI公平性》,就带大家讲解一下知识点,若是你对本文感兴趣,或者是想搞懂其中某个知识点,就请你继续往下看吧~
9月4日消息,Meta日前发布了一款名为FACET的开源数据集,旨在帮助研究人员审核计算机视觉模型中的偏差。
在一篇博客文章中,Meta详细说明,使用目前的基准测试方法很难评估人工智能的公平性。根据Meta的说法,FACET将通过提供一个大型评估数据集来简化这项任务,研究人员可以使用该数据集来审核几种不同类型的计算机视觉模型。
Meta研究人员在博客文章中详细介绍说:“该数据集由32,000张包含50,000人的图像组成,由专家人类注释者标记人口统计属性,如感知的性别表现,感知的年龄组,额外的身体属性,如感知的肤色、发型,以及与人相关的类别,如篮球运动员,医生等。FACET还包含SA-1B中69,000个口罩的人、头发和服装标签。”
研究人员可以通过让计算机视觉模型在FACET中处理照片来检查公平性问题。从那里,他们可以进行分析,以确定模型结果的准确性是否因照片而异。这种准确性的变化可能是人工智能有偏见的迹象。
研究人员可以使用该数据集来检测用于分类优化的神经网络中的偏差,这是将相似图像分组在一起的任务。此外,它使评估目标检测模型变得更容易。这种模型的设计目的是自动检测照片中感兴趣的项目。
FACET还可以审计执行实例分割和视觉接地的AI应用程序,这是两个专门的对象检测任务。实例分割是在照片中突出显示感兴趣的项目的过程,例如在它们周围画一个框。反过来,视觉基础模型是一种神经网络,它可以扫描照片,寻找用户用自然语言描述的对象。
Meta的研究人员表示:“虽然FACET仅用于研究评估目的,不能用于训练,但我们发布数据集和数据集浏览器的目的是使FACET可以成为计算机视觉模型的标准公平性评估基准。”
今天带大家了解了的相关知识,希望对你有所帮助;关于科技周边的技术知识我们会一点点深入介绍,欢迎大家关注golang学习网公众号,一起学习编程~
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
-
250 收藏
-
475 收藏
-
440 收藏
-
142 收藏
-
165 收藏
-
285 收藏
-
369 收藏
-
240 收藏
-
192 收藏
-
284 收藏
-
438 收藏
-
299 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 立即学习 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 立即学习 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 立即学习 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 立即学习 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 立即学习 484次学习