登录
首页 >  科技周边 >  人工智能

AI自主设计提示词,谷歌DeepMind发现数学“深呼吸”能让大模型涨8分!

来源:51CTO.COM

时间:2023-09-09 17:50:25 241浏览 收藏

本篇文章主要是结合我之前面试的各种经历和实战开发中遇到的问题解决经验整理的,希望这篇《AI自主设计提示词,谷歌DeepMind发现数学“深呼吸”能让大模型涨8分!》对你有很大帮助!欢迎收藏,分享给更多的需要的朋友学习~

提示词中加上“深呼吸”,AI大模型数学成绩就能再涨8.4分!

谷歌DeepMind团队最新发现,用这个新“咒语”(Take a deep breath)结合大家已经熟悉的“一步一步地想”(Let’s think step by step),大模型在GSM8K数据集上的成绩就从71.8提高到80.2分。

而且这个最有效的提示词,是AI自己找出来的

AI自主设计提示词,谷歌DeepMind发现数学“深呼吸”能让大模型涨8分!

有人开玩笑说,当你深呼吸后,散热风扇的转速就会提高

AI自主设计提示词,谷歌DeepMind发现数学“深呼吸”能让大模型涨8分!

有些人认为,新入职的高薪工程师们也应该冷静下来,因为他们的工作可能不会持续太久

AI自主设计提示词,谷歌DeepMind发现数学“深呼吸”能让大模型涨8分!

相关论文《大语言模型是优化器》,再次引起轰动。

AI自主设计提示词,谷歌DeepMind发现数学“深呼吸”能让大模型涨8分!

具体来说,大模型自己设计的提示词在Big-Bench Hard数据集上最高提升50%。

AI自主设计提示词,谷歌DeepMind发现数学“深呼吸”能让大模型涨8分!

也有人的关注点在“不同模型的最佳提示词不一样”

AI自主设计提示词,谷歌DeepMind发现数学“深呼吸”能让大模型涨8分!

在论文中,不仅仅是提示词设计这一任务,还测试了大模型在线性回归和旅行商问题等经典优化任务上的能力

模型不同,最佳提示词也不同

优化问题无处不在,基于导数和梯度的算法是强大的工具,但现实应用中也经常遇到梯度不适用的情况。

为解决这个问题,团队开发了新方法OPRO,也就是通过提示词优化(Optimization by PROmpting)。

不再是通过形式化定义优化问题并用程序求解,而是通过自然语言描述优化问题,并要求大型模型生成新的解决方案

一图流总结,就是对大模型的一种递归调用。

AI自主设计提示词,谷歌DeepMind发现数学“深呼吸”能让大模型涨8分!

每一步优化中,以之前生成的解决方案和评分作为输入,大模型生成新的方案并评分,再将其添加到提示词中,供下一步优化使用。

AI自主设计提示词,谷歌DeepMind发现数学“深呼吸”能让大模型涨8分!

论文主要使用谷歌的PaLM 2和Bard中的text-bison版本作为评测模型。

作为优化器,我们将使用四种模型,包括GPT-3.5和GPT-4

研究结果显示,不同的模型设计出的提示词风格以及适用的提示词风格也各不相同

此前在GPT系列上的AI设计出的最优提示词是“Let’s work this out in a step by step way to be sure we have the right answer.”

这个提示词使用APE方法设计,论文发表在ICLR 2023上,在GPT-3(text-davinci-002)上超过人类设计的版本“Let’s think step by step”。

AI自主设计提示词,谷歌DeepMind发现数学“深呼吸”能让大模型涨8分!

在谷歌系的PaLM 2和Bard上,APE版本在这次作为基准测试中表现不如人类版本

AI自主设计提示词,谷歌DeepMind发现数学“深呼吸”能让大模型涨8分!

OPRO方法设计出来的新提示词中,深呼吸”“拆解这个问题”对PaLM来说效果最好。

对于text-bison版的Bard大模型来说,更倾向于提供更详细的提示词

AI自主设计提示词,谷歌DeepMind发现数学“深呼吸”能让大模型涨8分!

此外,该论文还展示了大型模型在数学优化器方面的潜力

线性回归作为连续优化问题的示例。

AI自主设计提示词,谷歌DeepMind发现数学“深呼吸”能让大模型涨8分!

旅行商问题作为离散优化问题的示例。

AI自主设计提示词,谷歌DeepMind发现数学“深呼吸”能让大模型涨8分!

仅仅通过提示,大模型就能找到不错的解决方案,有时甚至匹敌或超过手动设计的启发式算法。

然而,团队也认为大模型还无法替代传统基于梯度的优化算法。当问题规模较大时,例如节点数量较多的旅行商问题,OPRO方法的表现并不理想

团队提出了对未来改进方向的想法。他们认为目前的大模型还无法有效地利用错误案例,仅仅提供错误案例无法让大模型捕捉到错误的原因

一个有前景的方向是结合关于错误案例的更丰富的反馈,并总结优化轨迹中高质量和低质量生成提示的关键特征差异。

这些信息有可能帮助优化器模型更有效地改进过去生成的提示,并有可能进一步减少进行提示优化所需的样本数量

论文放出大量最优提示词

论文来自谷歌与DeepMind合并后的部门,但作者以原谷歌大脑团队为主,包括Quoc Le周登勇

共同一作为康奈尔大学博士毕业的复旦校友Chengrun Yang,和UC伯克利博士毕业的上交大校友陈昕昀

团队还在论文中提供了许多实验中得到的最佳提示词,包括电影推荐、恶搞电影名字等实用场景。如果有需要的朋友,可以自行参考

AI自主设计提示词,谷歌DeepMind发现数学“深呼吸”能让大模型涨8分!

论文地址:https://arxiv.org/abs/2309.03409

今天关于《AI自主设计提示词,谷歌DeepMind发现数学“深呼吸”能让大模型涨8分!》的内容介绍就到此结束,如果有什么疑问或者建议,可以在golang学习网公众号下多多回复交流;文中若有不正之处,也希望回复留言以告知!

声明:本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
相关阅读
更多>
最新阅读
更多>
课程推荐
更多>