登录
首页 >  科技周边 >  人工智能

「灌篮高手」模拟人形机器人,一比一照搬人类篮球招式,看一遍就能学会,无需特定任务的奖励

来源:51CTO.COM

时间:2024-01-02 19:59:14 268浏览 收藏

有志者,事竟成!如果你在学习科技周边,那么本文《「灌篮高手」模拟人形机器人,一比一照搬人类篮球招式,看一遍就能学会,无需特定任务的奖励》,就很适合你!文章讲解的知识点主要包括,若是你对本文感兴趣,或者是想搞懂其中某个知识点,就请你继续往下看吧~

投篮、运球、手指转球…这个物理模拟人形机器人会打球:

「灌篮高手」模拟人形机器人,一比一照搬人类篮球招式,看一遍就能学会,无需特定任务的奖励图片

会的招数还不少:

「灌篮高手」模拟人形机器人,一比一照搬人类篮球招式,看一遍就能学会,无需特定任务的奖励图片

一通秀技下来,原来都是跟人学的,每个动作细节都精确复制:

「灌篮高手」模拟人形机器人,一比一照搬人类篮球招式,看一遍就能学会,无需特定任务的奖励图片

这就是最近一项名为PhysHOI的新研究,能够让物理模拟的人形机器人通过观看人与物体交互(HOI)的演示,学习并模仿这些动作和技巧。

重点是,PhysHOI无需为每个特定任务设定具体的奖励机制,机器人可以自主学习和适应。

而且机器人的身上总共有51x3个独立控制点,所以模仿起来能做到高度逼真。

「灌篮高手」模拟人形机器人,一比一照搬人类篮球招式,看一遍就能学会,无需特定任务的奖励图片

一起来看具体是如何实现的。

模拟人形机器人变身「灌篮高手」

这项工作由来自北京大学、IDEA研究院、清华大学、卡内基梅隆大学的研究人员共同提出。

「灌篮高手」模拟人形机器人,一比一照搬人类篮球招式,看一遍就能学会,无需特定任务的奖励图片

经研究人员介绍,此前大多数类似工作,存在模仿动作孤立、需特定任务的奖励、未涉及灵巧的全身运动等局限。

「灌篮高手」模拟人形机器人,一比一照搬人类篮球招式,看一遍就能学会,无需特定任务的奖励图片

而他们提出的PhysHOI,应用动作捕捉技术提取HOI数据,然后使用模仿学习来学习人体运动和物体控制,解决了这些问题。

其中,HOI数据重要组成部分之一是涵盖了人体运动、物体运动、相对运动的运动学数据(Kinematic Data),记录了位置、速度、角度等信息。

另外,动态数据(Dynamic Data)反映了运动过程中的实时变动和更新,也很重要。

「灌篮高手」模拟人形机器人,一比一照搬人类篮球招式,看一遍就能学会,无需特定任务的奖励图片

为了弥补HOI数据中动态信息的不足,研究人员引入了接触图(contact graph,CG)。

「灌篮高手」模拟人形机器人,一比一照搬人类篮球招式,看一遍就能学会,无需特定任务的奖励图片

CG的节点由机器人的肢体部件和物体组成;每条边则是一个二进制接触标签,只表达“接触”或“不接触”两种状态。

此外,还可以将多个肢体部件放到一个节点中,形成一个聚合CG(Aggregated CG)。

具体来说,PhysHOI方法是:

首先通过运动捕捉获取参考HOI状态序列,包含人体运动、物体运动、交互图和接触图。

「灌篮高手」模拟人形机器人,一比一照搬人类篮球招式,看一遍就能学会,无需特定任务的奖励图片

然后用第一帧的信息初始化物理模拟环境,构建包含当前模拟状态和下一个参考状态的系统状态。

接下来输入策略网络生成的动作控制人形机器人,物理模拟器根据动作更新场景中人体和物体的状态,计算包含运动匹配、接触图等多个方面的奖励。

利用奖励、状态和动作样本优化策略网络,采用更新后的策略网络开始新一轮的模拟过程,如此循环直至网络收敛,最终获得能够重现参考HOI技能的控制策略。

值得一提的是,研究人员在这当中设计了一个与任务无关的HOI模仿奖励,无需针对不同任务自定义奖励函数,包括体现运动匹配度的身体和物体奖励、反映接触正确性的接触图奖励,避免了使用错误身体部位接触物体等局部最优解。

接触图奖励是关键

研究人员在两个HOI数据集上测试了PhysHOI。

其中引入了BallPlay数据集,包含多种全身篮球技能。

「灌篮高手」模拟人形机器人,一比一照搬人类篮球招式,看一遍就能学会,无需特定任务的奖励图片

他们在GRAB数据集的S8子集中选择了5个抓取案例,以及BallPlay数据集的8个篮球技能。

以此前的DeepMimic、AMP等方法作为基线,为公平比较,研究人员将其做了修改,以适应HOI模仿任务。

「灌篮高手」模拟人形机器人,一比一照搬人类篮球招式,看一遍就能学会,无需特定任务的奖励图片

结果显示,以往只使用运动学奖励的方法无法准确复现交互,球会掉落或抓握失败。

而在接触图的指导下,PhysHOI成功进行了HOI模仿。

PhysHOI在两个数据集上都获得最高的成功率,分别为95.4%和82.4%,同时也取得最低的运动误差,显著优于其它方法。

「灌篮高手」模拟人形机器人,一比一照搬人类篮球招式,看一遍就能学会,无需特定任务的奖励图片

消融研究表明,接触图奖励能有效避免只使用运动信息的方法陷入局部最优,指导机器人实现正确接触。

「灌篮高手」模拟人形机器人,一比一照搬人类篮球招式,看一遍就能学会,无需特定任务的奖励图片

如果没有接触图奖励,人形机器人可能无法控制球,或者错误地使用身体其它部位控制球:

「灌篮高手」模拟人形机器人,一比一照搬人类篮球招式,看一遍就能学会,无需特定任务的奖励图片

论文链接:https://arxiv.org/abs/2312.04393

今天关于《「灌篮高手」模拟人形机器人,一比一照搬人类篮球招式,看一遍就能学会,无需特定任务的奖励》的内容就介绍到这里了,是不是学起来一目了然!想要了解更多关于函数,的HOI的内容请关注golang学习网公众号!

声明:本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
相关阅读
更多>
最新阅读
更多>
课程推荐
更多>