解密Pytorch的关键技术:Tensor !
来源:51CTO.COM
时间:2024-01-19 15:24:50 481浏览 收藏
学习知识要善于思考,思考,再思考!今天golang学习网小编就给大家带来《解密Pytorch的关键技术:Tensor !》,以下内容主要包含等知识点,如果你正在学习或准备学习科技周边,就都不要错过本文啦~让我们一起来看看吧,能帮助到你就更好了!
今天会把Pytorch在张量这方面的内容做一个记录。
同时希望可以给大家提供一丢丢帮助!
因为今儿分享的内容,绝对是非常干货的一些示例。
先简单介绍下,在PyTorch中,张量是核心数据结构,它是一个多维数组,类似于NumPy中的数组。张量不仅仅是存储数据的容器,还是进行各种数学运算和深度学习操作的基础。
下面从三方面做一个总结:
- 张量的概念
- 张量的原理
- 张量的操作
图片
张量的概念
1.张量的定义
张量是一种多维数组,它可以是标量(零维数组)、向量(一维数组)、矩阵(二维数组)或具有更高维度的数组。
在PyTorch中,张量是torch.Tensor的实例,可以通过不同的方式创建,如直接从Python列表、NumPy数组或通过特定函数生成。
import torch# 创建一个标量scalar_tensor = torch.tensor(3.14)# 创建一个向量vector_tensor = torch.tensor([1, 2, 3])# 创建一个矩阵matrix_tensor = torch.tensor([[1, 2, 3], [4, 5, 6]])# 创建一个3D张量tensor_3d = torch.rand((2, 3, 4))# 2行3列4深度
2.张量的属性
每个张量都有一些重要的属性,包括形状(shape)、数据类型(dtype)和设备(device)。
# 获取张量的形状shape = tensor_3d.shape# 获取张量的数据类型dtype = tensor_3d.dtype# 获取张量所在的设备device = tensor_3d.device
3.张量的形状
张量的形状定义了其维度和每个维度上的大小。例如,形状为(2, 3, 4)的张量具有2行、3列和4个深度。形状对于理解和操作张量非常重要。
# 获取张量的形状shape = tensor_3d.shape# 改变张量的形状reshaped_tensor = tensor_3d.view(3, 8)# 将原始形状(2, 3, 4)变为(3, 8)
张量的原理
PyTorch中的张量是基于Tensor类实现的,它提供了对底层存储的抽象。
张量包含三个主要组件:
- 存储(storage)
- 形状(shape)
- 步幅(stride)
1.存储
(Storage)存储是实际存储数据的地方,它是一块连续的内存区域。多个张量可以共享相同的存储,从而减少内存消耗。存储中的数据按照张量的形状进行排列。
# 获取张量的存储storage = tensor_3d.storage()
2.形状(Shape)
张量的形状定义了其维度和每个维度上的大小。形状信息有助于解释存储中数据的组织方式。
# 获取张量的形状shape = tensor_3d.shape
3.步幅(Stride)
步幅是指在存储中移动到下一个元素所需的步数。了解步幅有助于理解在张量中进行索引和切片时的性能。
# 获取张量的步幅stride = tensor_3d.stride()
张量的操作
PyTorch提供了丰富的张量操作,包括数学运算、逻辑运算、索引和切片等。
这里列举最最常见的集中操作:
1.数学运算
# 加法result_add = tensor_3d + 2# 乘法result_mul = tensor_3d * 3# 矩阵乘法matrix_a = torch.rand((2, 3))matrix_b = torch.rand((3, 4))result_matmul = torch.mm(matrix_a, matrix_b)
2. 逻辑运算
# 大小比较result_compare = tensor_3d > 0.5# 逻辑运算result_logical = torch.logical_and(result_add, result_compare)
3. 索引和切片
# 索引element = tensor_3d[0, 1, 2]# 切片sliced_tensor = tensor_3d[:, 1:3, :]
4. 形状操作
# 改变形状reshaped_tensor = tensor_3d.view(3, 8)# 转置transposed_tensor = tensor_3d.transpose(0, 2)
5.广播
广播是一种自动扩展张量的操作,使得形状不同的张量可以进行逐元素的数学运算。
# 广播tensor_a = torch.rand((1, 3, 1))tensor_b = torch.rand((2, 1, 4))result_broadcast = tensor_a + tensor_b
最后
今儿介绍的是关于PyTorch中张量的基础概念、原理以及常见操作。
张量作为深度学习中的基本数据结构,对于理解和实现神经网络非常关键。
终于介绍完啦!小伙伴们,这篇关于《解密Pytorch的关键技术:Tensor !》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布科技周边相关知识,快来关注吧!
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
-
224 收藏
-
146 收藏
-
465 收藏
-
290 收藏
-
112 收藏
-
262 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 立即学习 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 立即学习 507次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 立即学习 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 立即学习 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 立即学习 484次学习