随机森林在机器学习中的应用
来源:网易伏羲
时间:2024-01-31 08:35:31 285浏览 收藏
学习知识要善于思考,思考,再思考!今天golang学习网小编就给大家带来《随机森林在机器学习中的应用》,以下内容主要包含等知识点,如果你正在学习或准备学习科技周边,就都不要错过本文啦~让我们一起来看看吧,能帮助到你就更好了!
随机森林利用多个分类树对输入向量进行分类,每棵树都有一个分类结果,最终选择票数最高的分类作为最终结果。
以上是随机森林的介绍,接下来我们来看看随机森林算法的工作流程。
第1步:首先从数据集中选择随机样本。
第2步:对于每个样本,该算法将创建一个决策树。然后将获得每个决策树的预测结果。
第3步:将对这一步中的每个预期结果进行投票。
第4步:最后选择得票最多的预测结果作为最终的预测结果。
随机森林算法原理
随机森林方法的优点
- 通过平均或整合不同决策树的输出,它解决了过度拟合的问题。
- 对于范围广泛的数据项,随机森林比单个决策树表现更好。
- 即使缺少大量数据,随机森林算法也能保持高精度。
机器学习中随机森林的特点
- 目前可用的最准确的算法。
- 适用于庞大的数据库。
- 可以处理数以万计的输入变量而不删除其中任何一个。
- 计算分类中几个变量的重要性。
- 随着森林的增长,它会生成泛化误差的内部无偏估计。
- 为猜测丢失的数据提供了一个很好的策略,即使在大量数据丢失的情况下也能保持其准确性。
- 包括用于平衡类人群中不均匀数据集的不准确性的方法。
- 创建的森林可以在将来保存并用于其他数据。
- 创建原型以显示变量和分类之间的关系。
- 计算示例对之间的距离,这对于聚类、检测异常值或提供引人入胜的数据视图(按比例)很有用。
- 未标记的数据可用于使用上述功能创建无监督聚类、数据可视化和异常值识别。
- 提供了一种通过实验寻找可变相互作用的机制。
当我们在具有特定特征的数据集上训练随机森林模型时,得到的模型对象可以告诉我们哪些特征在训练过程中最相关,即哪些特征对目标变量的影响最大。该变量的重要性是针对随机森林中每棵树确定的,然后在整个森林中取平均值以生成每个特征的单个度量。可以使用此度量按相关性对特征进行排序,并仅使用这些特征重新训练我们的随机森林模型。
到这里,我们也就讲完了《随机森林在机器学习中的应用》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于机器学习的知识点!
声明:本文转载于:网易伏羲 如有侵犯,请联系study_golang@163.com删除
相关阅读
更多>
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
最新阅读
更多>
-
221 收藏
-
276 收藏
-
298 收藏
-
489 收藏
-
438 收藏
-
379 收藏
-
483 收藏
-
183 收藏
-
479 收藏
-
379 收藏
-
391 收藏
-
364 收藏
课程推荐
更多>
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 立即学习 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 立即学习 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 立即学习 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 立即学习 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 立即学习 484次学习