理解和应用余弦相似度
来源:网易伏羲
时间:2024-01-23 14:02:51 274浏览 收藏
本篇文章向大家介绍《理解和应用余弦相似度》,主要包括,具有一定的参考价值,需要的朋友可以参考一下。
余弦相似度是一种用来衡量向量之间相似度的度量方法。在数学上,它被定义为两个向量的点积除以它们的欧几里得范数的乘积。在机器学习领域,余弦相似度被广泛应用于文本分类、推荐系统等任务中,用来比较两个向量之间的相似程度。余弦相似度的计算方法是通过计算两个向量之间的夹角的余弦值来实现的。需要注意的是,这些向量通常是非零的,并且存在于内积空间中。
本文就来介绍下什么是余弦相似度?以及余弦相似度的作用。
什么是余弦相似度
余弦相似度是一种常用的相似度度量技术,可以在多个库和工具中找到,如Matlab、SciKit-Learn和TensorFlow。它是一种受0和1约束范围的值。余弦相似度用来衡量两个非零向量A和B之间的夹角的余弦值,从而度量它们之间的相似性。
假设两个向量之间的角度为90度,余弦相似度是一个受0和1约束范围的值。当该值越接近0意味着两个向量正交或相互垂直,表示它们之间的相似度较低。而当余弦相似度越接近1时,表示角度越小,图像越相似。
随着余弦相似度测量值越来越接近1,则两个向量A和B之间的角度越小。
余弦相似度的作用
在计算机视觉和数据挖掘领域,高维空间中向量相似性度量具有广泛应用。
1.文档相似度
利用余弦相似性度量文档之间的相似性是一种常见的用例。
为了量化两个文档之间的相似性,我们需要将文档或句子中的单词或短语转换为向量表示。通过使用文档的向量表示,我们可以应用余弦相似度公式来计算相似度。这样就能够量化两个文档之间的相似性了。
在上述场景中,余弦相似度为1意味着两个文档完全相似,而余弦相似度为0则表明两个文档之间没有相似性。
2.姿势匹配
姿势匹配涉及比较包含关节位置关键点的姿势。
姿态估计是一项计算机视觉任务,通常使用深度学习方法解决,例如卷积姿态机、堆叠沙漏和PoseNet等。
姿势估计是从图像或图像序列中导出身体重要部位和关节的位置和方向的过程。
结尾
余弦相似度还能用作其他应用领域,例如推荐系统、剽窃检测器和数据挖掘。它甚至可以作为训练神经网络时的损失函数。余弦相似度背后的逻辑很容易理解,并且可以用大多数现代编程语言来实现。
好了,本文到此结束,带大家了解了《理解和应用余弦相似度》,希望本文对你有所帮助!关注golang学习网公众号,给大家分享更多科技周边知识!
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
-
248 收藏
-
335 收藏
-
480 收藏
-
135 收藏
-
406 收藏
-
454 收藏
-
284 收藏
-
226 收藏
-
447 收藏
-
301 收藏
-
243 收藏
-
358 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 立即学习 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 立即学习 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 立即学习 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 立即学习 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 立即学习 484次学习