使用实例解释混淆矩阵对二进制分类的辅助理解
来源:网易伏羲
时间:2024-01-24 16:56:00 426浏览 收藏
各位小伙伴们,大家好呀!看看今天我又给各位带来了什么文章?本文标题是《使用实例解释混淆矩阵对二进制分类的辅助理解》,很明显是关于科技周边的文章哈哈哈,其中内容主要会涉及到等等,如果能帮到你,觉得很不错的话,欢迎各位多多点评和分享!
混淆矩阵是一种评估模式,帮助机器学习工程师更了解模型性能。本文以一个二元类不平衡数据集为例,测试集由60个正类样本和40个负类样本组成,用于评估机器学习模型。
二元类数据集仅有两个不同类别的数据,可简单命名为“正面”和“负面”类别。
现在,要完全理解这个二分类问题的混淆矩阵,我们首先需要熟悉以下术语:
True Positive(TP)是指属于正类的样本被正确分类。
True Negative(TN)是指属于负类的样本被正确分类。
False Positive(FP)是指属于阴性类的样本被错误地分类为属于阳性类。
False Negative(FN)是指属于正类的样本被错误地归类为负类。

我们可以通过训练模型获得的混淆矩阵示例如上所示,用于此示例数据集。
将第一列中的数字相加,我们看到正类中的样本总数为45+15=60。将第二列中的数字相加得到负类中的样本数,在本例中为40。所有方框中的数字总和给出了评估的样本总数。此外,正确的分类是矩阵的对角线元素——正类45个,负类32个。
现在,模型将左下角的框归类为正类样本,所以它被称为"FN",因为模型预测的"阴性"是错误的。同理,右上框预计属于负类,但被模型分类为"正"。因此,它们被称为“FP”。我们可以使用矩阵中的这四个不同数字更仔细地评估模型。
终于介绍完啦!小伙伴们,这篇关于《使用实例解释混淆矩阵对二进制分类的辅助理解》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布科技周边相关知识,快来关注吧!
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
-
177 收藏
-
433 收藏
-
280 收藏
-
120 收藏
-
440 收藏
-
390 收藏
-
379 收藏
-
422 收藏
-
286 收藏
-
100 收藏
-
277 收藏
-
259 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 立即学习 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 立即学习 511次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 立即学习 498次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 立即学习 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 立即学习 484次学习