比较AIC和BIC的不同与关联
来源:网易伏羲
时间:2024-01-29 23:17:16 493浏览 收藏
偷偷努力,悄无声息地变强,然后惊艳所有人!哈哈,小伙伴们又来学习啦~今天我将给大家介绍《比较AIC和BIC的不同与关联》,这篇文章主要会讲到等等知识点,不知道大家对其都有多少了解,下面我们就一起来看一吧!当然,非常希望大家能多多评论,给出合理的建议,我们一起学习,一起进步!
AIC(Akaike Information Criterion)和BIC(Bayesian Information Criterion)是常用的模型选择标准,用于比较不同模型并选择最适合数据的模型。这两个标准的目标都是在模型的拟合优度和复杂性之间寻求平衡,以避免过拟合或欠拟合问题。 AIC是由赤池弘次(Hirotugu Akaike)提出的,它基于信息论的概念,考虑了模型的拟合优度和参数数量之间的平衡。AIC的计算公式为AIC = -2log(L) + 2k,其中L表示模型的最大似然估计值,k表示模型的参数数量。 BIC是由斯瓦齐亚克(Gideon E. Schwarz)提出的,它是基于贝叶斯
AIC和BIC是用于权衡模型适应度和复杂性的指标,可适用于各种统计模型,包括聚类方法。然而,由于聚类方法的类型和对数据分布的假设不同,AIC和BIC的具体形式可能会有所不同。
AIC和BIC之间的主要区别在于它们如何权衡拟合优度和复杂性之间的权衡。
AIC基于最大似然原理,它会惩罚相对于数据大小具有大量参数的模型。
AIC的公式
AIC=2k-2ln(L)
目标是找到具有最低AIC值的模型,以平衡拟合优度和复杂性。其中k是模型参数数量,即模型L的最大似然。
BIC与AIC类似,但它对参数数量较多的模型的惩罚更为严重。
BIC的公式
BIC=kln(n)-2ln(L)
其中k是模型中参数的n数量,是数据点的数量,L是模型的最大似然。目标是找到具有最低BIC值的模型,因为这表明该模型具有拟合优度和复杂性的最佳平衡。
一般来说,BIC会比AIC更严厉地惩罚具有大量参数的模型,因此当目标是找到一个更加简约模型时,可以使用BIC。
在模型选择的上下文中,简约模型是具有少量参数但仍能很好地拟合数据的模型。简约模型的目标是简化模型并降低复杂性,同时仍然捕获数据的基本特征。当提供相似水平的准确度时,简约模型比更复杂的模型更受欢迎,因为它更容易解释,不太容易过度拟合,并且计算效率更高。
还需要注意的是AIC和BIC都可用于比较不同的模型并为给定数据集选择最佳模型。
以上就是《比较AIC和BIC的不同与关联》的详细内容,更多关于人工智能,机器学习的资料请关注golang学习网公众号!
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
-
353 收藏
-
464 收藏
-
438 收藏
-
443 收藏
-
367 收藏
-
260 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 立即学习 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 立即学习 507次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 立即学习 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 立即学习 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 立即学习 484次学习