神经网络权重更新的概念和技巧
来源:网易伏羲
时间:2024-01-25 17:37:41 102浏览 收藏
学习知识要善于思考,思考,再思考!今天golang学习网小编就给大家带来《神经网络权重更新的概念和技巧》,以下内容主要包含等知识点,如果你正在学习或准备学习科技周边,就都不要错过本文啦~让我们一起来看看吧,能帮助到你就更好了!
神经网络中的权重更新是通过反向传播算法等方法来调整网络中神经元之间的连接权重,以提高网络的性能。本文将介绍权重更新的概念和方法,以帮助读者更好地理解神经网络的训练过程。
一、概念
神经网络中的权重是连接不同神经元之间的参数,决定着信号传递的强度。每个神经元接收上一层信号,乘以连接的权重,并加上偏置项,最后通过激活函数激活并传递给下一层。因此,权重的大小直接影响信号的强度和方向,进而影响神经网络的输出结果。
权重更新的目的是为了优化神经网络的性能。在训练过程中,神经网络通过不断调整神经元之间的权重来适应训练数据,以提高在测试数据上的预测能力。通过权重的调整,神经网络能够更好地拟合训练数据,从而提高预测准确率。这样,神经网络就能够更准确地预测未知数据的结果,实现更好的性能。
二、方法
神经网络中常用的权重更新方法有梯度下降、随机梯度下降、批量梯度下降。
梯度下降法
梯度下降法是一种最基本的权重更新方法,其基本思想是通过计算损失函数对权重的梯度(即损失函数对权重的导数)来更新权重,以使损失函数最小化。具体来说,梯度下降法的步骤如下:
首先,我们需要定义一个损失函数,用来衡量神经网络在训练数据上的表现。通常情况下,我们会选择均方误差(MSE)作为损失函数,其定义如下:
MSE=\frac{1}{n}\sum_{i=1}^{n}(y_i-\hat{y_i})^2
其中,y_i表示第i个样本的真实值,\hat{y_i}表示神经网络对第i个样本的预测值,n表示样本总数。
然后,我们需要计算损失函数对权重的导数,即梯度。具体来说,对于神经网络中的每个权重w_{ij},其梯度可以通过以下公式计算:
\frac{\partial MSE}{\partial w_{ij}}=\frac{2}{n}\sum_{k=1}^{n}(y_k-\hat{y_k})\cdot f'(\sum_{j=1}^{m}w_{ij}x_{kj})\cdot x_{ki}
其中,n表示样本总数,m表示神经网络的输入层大小,x_{kj}表示第k个样本的第j个输入特征,f(\cdot)表示激活函数,f'(\cdot)表示激活函数的导数。
最后,我们可以通过以下公式来更新权重:
w_{ij}=w_{ij}-\alpha\cdot\frac{\partial MSE}{\partial w_{ij}}
其中,\alpha表示学习率,控制着权重更新的步长。
随机梯度下降法
随机梯度下降法是梯度下降法的一种变体,其基本思想是每次随机选择一个样本来计算梯度,并更新权重。相比于梯度下降法,随机梯度下降法可以更快地收敛,并且在处理大规模数据集时更加高效。具体来说,随机梯度下降法的步骤如下:
首先,我们需要将训练数据打乱顺序,并随机选择一个样本x_k来计算梯度。然后,我们可以通过以下公式来计算损失函数对权重的导数:
\frac{\partial MSE}{\partial w_{ij}}=2(y_k-\hat{y_k})\cdot f'(\sum_{j=1}^{m}w_{ij}x_{kj})\cdot x_{ki}
其中,y_k表示第k个样本的真实值,\hat{y_k}表示神经网络对第k个样本的预测值。
最后,我们可以通过以下公式来更新权重:
w_{ij}=w_{ij}-\alpha\cdot\frac{\partial MSE}{\partial w_{ij}}
其中,\alpha表示学习率,控制着权重更新的步长。
批量梯度下降法
批量梯度下降法是梯度下降法的另一种变体,其基本思想是每次使用一个小批量的样本来计算梯度,并更新权重。相比于梯度下降法和随机梯度下降法,批量梯度下降法可以更稳定地收敛,并且在处理小规模数据集时更加高效。具体来说,批量梯度下降法的步骤如下:
首先,我们需要将训练数据分成若干个大小相等的小批量,每个小批量包含b个样本。然后,我们可以在每个小批量上计算损失函数对权重的平均梯度,即:
\frac{1}{b}\sum_{k=1}^{b}\frac{\partial MSE}{\partial w_{ij}}
其中,b表示小批量大小。最后,我们可以通过以下公式来更新权重:
w_{ij}=w_{ij}-\alpha\cdot\frac{1}{b}\sum_{k=1}^{b}\frac{\partial MSE}{\partial w_{ij}}
其中,\alpha表示学习率,控制着权重更新的步长。
理论要掌握,实操不能落!以上关于《神经网络权重更新的概念和技巧》的详细介绍,大家都掌握了吧!如果想要继续提升自己的能力,那么就来关注golang学习网公众号吧!
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
-
420 收藏
-
212 收藏
-
179 收藏
-
134 收藏
-
124 收藏
-
276 收藏
-
413 收藏
-
249 收藏
-
114 收藏
-
300 收藏
-
449 收藏
-
129 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 立即学习 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 立即学习 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 立即学习 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 立即学习 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 立即学习 484次学习