登录
首页 >  数据库 >  MySQL

mysql大数据表怎么优化分页性能?优化方法分享

来源:SegmentFault

时间:2023-01-22 12:58:14 413浏览 收藏

对于一个数据库开发者来说,牢固扎实的基础是十分重要的,golang学习网就来带大家一点点的掌握基础知识点。今天本篇文章带大家了解《mysql大数据表怎么优化分页性能?优化方法分享》,主要介绍了MySQL、python、查询优化、大数据、sqlalchemy,希望对大家的知识积累有所帮助,快点收藏起来吧,否则需要时就找不到了!

最近的工作中实现了一个定时统计功能:需要按指定顺序,从源表中取出数据,经过分组合并,插入目标表。

源表数据量相当大,有几千万行,显然不适合一次性取出(如果是一次性的脚本,在大内存的机器上也是可以考虑的,但定时任务每次启动都占用数十GB内存就太夸张了),需要分页查询。

但最初的实现中,采用了一个封装好的分页库,单纯的全表查询,纯粹依赖limit子句限制结果集窗口,构成的SQL语句类似这样:

select * from A order by x, y limit 30000, 10000

其中字段 x 和字段 y 是有联合索引的,每页返回 10000 条。

结果惨不忍睹,每页查询需要40秒才能返回,而这样的查询需要循环几千次,整整半天时间都没执行完。


解决方案也很简单,使用自定义的分页机制,基于字段 x 筛选实现分页:

select * from A where x > 30000 order by x, y limit 10000
注意:这里的 30000,只是示例,每次要把上一页最后一条的 x 值记下来,当做下一页"x > ?" 的判断条件。

python + sqlalchemy 的代码示例如下:

PAGE_SIZE = 10000

last_x = 0    # 这里假设 x 永远是大于零的整数,如果不是,初始化一个最小值
while last_x == 0 or len(records > 0):
    # last_x == 0 这个条件,相当于判断是否第一次循环,这里其实有 do...while 语句更好,可惜 python 没有
    records = A.query.filter(A.x > last_x).order_by(A.x, A.y).limit(PAGE_SIZE)
    last_x = records[-1].x
    # do something

文中关于mysql的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《mysql大数据表怎么优化分页性能?优化方法分享》文章吧,也可关注golang学习网公众号了解相关技术文章。

声明:本文转载于:SegmentFault 如有侵犯,请联系study_golang@163.com删除
相关阅读
更多>
最新阅读
更多>
课程推荐
更多>
评论列表