登录
首页 >  数据库 >  MySQL

【MySQL—原理】锁

来源:SegmentFault

时间:2023-01-25 13:53:45 132浏览 收藏

在数据库实战开发的过程中,我们经常会遇到一些这样那样的问题,然后要卡好半天,等问题解决了才发现原来一些细节知识点还是没有掌握好。今天golang学习网就整理分享《【MySQL—原理】锁》,聊聊MySQL,希望可以帮助到正在努力赚钱的你。

锁是数据库系统区别于文件系统的一个关键特性。锁机制用于管理对共享资源的并发访问。InnoDB存储引擎会在行级别上对表数据上锁,这固然不错。不过InnoDB存储引擎也会在数据库内部其他多个地方使用锁,从而允许对多种不同资源提供并发访问。例如,操作缓冲池中的LRU列表,删除、添加、移动LRU列表中的元素,为了保证一致性,必须有锁的介入。数据库系统使用锁是为了支持对共享资源进行并发访问,提供数据的完整性和一致性。

InnoDB存储引擎中的锁

锁的类型

InnoDB存储引擎实现了如下两种标准的行级锁:共享锁(S Lock,允许事务读一行数据)和排他锁(X Lock,允许事务删除或更新一行数据)。

此外,InnoDB存储引擎支持多粒度(granular)锁定,这种锁定允许事务在行级上的锁和表级上的锁同时存在。为了支持在不同粒度上进行加锁操作,InnoDB存储引擎支持一种额外的锁方式,称之为意向锁(IntentionLock)。意向锁是将锁定的对象分为多个层次,意向锁意味着事务希望在更细粒度(fine granularity)上进行加锁,如图所示。

image.png

若将上锁的对象看成一棵树,那么对最下层的对象上锁,也就是对最细粒度的对象进行上锁,那么首先需要对粗粒度的对象上锁。如图,如果需要对页上的记录r进行上X锁,那么分别需要对数据库A、表、页上意向锁IX,最后对记录r上X锁。若其中任何一个部分导致等待,那么该操作需要等待粗粒度锁的完成。举例来说,在对记录r加X锁之前,已经有事务对表1进行了S表锁,那么表1上已存在S锁,之后事务需要对记录r在表1上加上IX,由于不兼容,所以该事务需要等待表锁操作的完成。

InnoDB存储引擎支持意向锁设计比较简练,其意向锁即为表级别的锁。设计目的主要是为了在一个事务中揭示下一行将被请求的锁类型。

在InnoDB 1.0版本之前,用户只能通过命令SHOW FULL PROCESSLIST,SHOW ENGINE INNODBSTATUS等来查看当前数据库中锁的请求,然后再判断事务锁的情况。从InnoDB1.0开始,在INFORMATION_SCHEMA架构下添加了表INNODB_TRX、INNODB_LOCKS、INNODB_LOCK_WAITS。通过这三张表,用户可以更简单地监控当前事务并分析可能存在的锁问题。

三张表的字段定义如下:

INNODB_TRX:

image.png

INNODB_LOCKS:

image.png

INNODB_LOCK_WAITS:

image.png

一致性非锁定读

一致性的非锁定读(consistent nonlocking read)是指InnoDB存储引擎通过行多版本控制(multiversioning)的方式来读取当前执行时间数据库中行的数据。如果读取的行正在执行DELETE或UPDATE操作,这时读取操作不会因此去等待行上锁的释放。相反地,InnoDB存储引擎会去读取行的一个快照数据。

image.png

之所以称其为非锁定读,因为不需要等待访问的行上X锁的释放。快照数据是指该行的之前版本的数据,该实现是通过undo段来完成。而undo用来在事务中回滚数据,因此快照数据本身是没有额外的开销。此外,读取快照数据是不需要上锁的,因为没有事务需要对历史的数据进行修改操作。

在事务隔离级别READ COMMITTED和REPEATABLE READ(InnoDB存储引擎的默认事务隔离级别)下,InnoDB存储引擎使用非锁定的一致性读。然而,对于快照数据的定义却不相同。在READCOMMITTED事务隔离级别下,对于快照数据,非一致性读总是读取被锁定行的最新一份快照数据。而在REPEATABLE READ事务隔离级别下,对于快照数据,非一致性读总是读取事务开始时的行数据版本。

一致性锁定读

在某些情况下,用户需要显式地对数据库读取操作进行加锁以保证数据逻辑的一致性。而这要求数据库支持加锁语句,即使是对于SELECT的只读操作。InnoDB存储引擎对于SELECT语句支持两种一致性的锁定读(locking read)操作:

  1. SELECT…FOR UPDATE
  2. SELECT…LOCK IN SHARE MODE

SELECT…FOR UPDATE对读取的行记录加一个X锁,其他事务不能对已锁定的行加上任何锁。SELECT…LOCK IN SHARE MODE对读取的行记录加一个S锁,其他事务可以向被锁定的行加S锁,但是如果加X锁,则会被阻塞。

自增长与锁

自增长在数据库中是非常常见的一种属性,也是很多DBA或开发人员首选的主键方式。在InnoDB存储引擎的内存结构中,对每个含有自增长值的表都有一个自增长计数器(auto-incrementcounter)。当对含有自增长的计数器的表进行插入操作时,这个计数器会被初始化,执行如下的语句来得到计数器的值:

SELECT MAX(auto_incr_col) FROM t FOR UPDATE;

插入操作会依据这个自增长的计数器值加1赋予自增长列。这个实现方式称做AUTO-INC Locking。这种锁其实是采用一种特殊的表锁机制,为了提高插入的性能,锁不是在一个事务完成后才释放,而是在完成对自增长值插入的SQL语句后立即释放。

虽然AUTO-INC Locking从一定程度上提高了并发插入的效率,但还是存在一些性能上的问题。首先,对于有自增长值的列的并发插入性能较差,事务必须等待前一个插入的完成(虽然不用等待事务的完成)。其次,对于INSERT…SELECT的大数据量的插入会影响插入的性能,因为另一个事务中的插入会被阻塞。

从MySQL 5.1.22版本开始,InnoDB存储引擎中提供了一种轻量级互斥量的自增长实现机制,这种机制大大提高了自增长值插入的性能。并且从该版本开始,InnoDB存储引擎提供了一个参数innodb_autoinc_lock_mode来控制自增长的模式,该参数的默认值为1。在继续讨论新的自增长实现方式之前,需要对自增长的插入进行分类,如下表所示。

image.png

接着来分析参数innodb_autoinc_lock_mode以及各个设置下对自增的影响,其总共有三个有效值可供设定,即0、1、2,具体说明如下表所示。

image.png

说句题外话,在InnoDB存储引擎中,自增长值的列必须是索引,同时必须是索引的第一个列。如果不是第一个列,则MySQL数据库会抛出异常,而MyISAM存储引擎没有这个问题。

锁的算法

行锁的三种算法

InnoDB存储引擎有3种行锁的算法,其分别是:

  • Record Lock:单个行记录上的锁
  • Gap Lock:间隙锁,锁定一个范围,但不包含记录本身
  • Next-Key Lock∶Gap Lock+Record Lock,锁定一个范围,并且锁定记录本身

Record Lock总是会去锁住索引记录,如果InnoDB存储引擎表在建立的时候没有设置任何一个索引,那么这时InnoDB存储引擎会使用隐式的主键来进行锁定。

Next-Key Lock是结合了Gap Lock和Record Lock的一种锁定算法,在Next-Key Lock算法下,InnoDB对于行的查询都是采用这种锁定算法。例如一个索引有10,11,13和20这四个值,那么该索引可能被Next-Key Locking的区间为:

(-∞, 10]
(10, 11]
(11, 13]
(13, 20]
(20, +∞)

采用Next-Key Lock的锁定技术称为Next-Key Locking,其设计的目的是为了解决幻读。不过,当查询的索引含有唯一属性时,InnoDB存储引擎会对Next-Key Lock进行优化,将其降级为Record Lock,即仅锁住索引本身,而不是范围

看个例子,首先创建测试表:

CREATE TABLE z ( a INT, b INT, PRIMARY KEY(a), KEY(b) );
INSERT INTO z SELECT 1, 1;
INSERT INTO z SELECT 3, 1;
INSERT INTO z SELECT 5, 3;
INSERT INTO z SELECT 7, 6;
INSERT INTO z SELECT 10, 8;

若执行下面的SQL语句:

SELECT * FROM z WHERE b = 3 FOR UPDATE;

这时SQL语句通过索引列b进行查询,因此其使用传统的Next-Key Locking技术加锁,并且由于有两个索引,其需要分别进行锁定。对于聚集索引,其仅对列a等于5的索引加上Record Lock。而对于辅助索引,其加上的是Next-Key Lock,锁定的范围是(1,3],特别需要注意的是,InnoDB存储引擎还会对辅助索引下一个键值加上gap lock,即还有一个辅助索引范围为(3,6)的锁,也即会对辅助索引键值以及前后两段间隙加锁。

因此执行下面的SQL语句都会被阻塞:

SELECT * FROM z WHERE a = 5 LOCK IN SHARE MODE;
INSERT INTO z SELECT 4, 2;
INSERT INTO z SELECT 6, 5;

而下面的SQL语句则会被执行:

SELECT * FROM z WHERE a = 4 LOCK IN SHARE MODE;
INSERT INTO z SELECT 8, 6;
INSERT INTO z SELECT 2, 0;
INSERT INTO z SELECT 6, 7;

从上面的例子中可以看到,Gap Lock的作用是为了阻止多个事务将记录插入到同一范围内,而这会导致Phantom Problem问题的产生。用户可以通过以下两种方式来显式地关闭Gap Lock:

  1. 将事务的隔离级别设置为READ COMMITTED
  2. 将参数innodb_locks_unsafe_for_binlog设置为1

在上述的配置下,除了外键约束和唯一性检查依然需要的Gap Lock,其余情况仅使用Record Lock进行锁定。但需要牢记的是,上述设置破坏了事务的隔离性,并且对于replication,可能会导致主从数据的不一致。此外,从性能上来看,READ COMMITTED也不会优于默认的事务隔离级别READREPEATABLE。

需要提醒的是,对于唯一键值的锁定,Next-Key Lock降级为Record Lock仅存在于查询所有的唯一索引列。若唯一索引由多个列组成,而查询仅是查找多个唯一索引列中的其中一个,那么查询其实是range类型查询,而不是point类型查询,故InnoDB存储引擎依然使用Next-Key Lock进行锁定。

此外,用户可以通过InnoDB存储引擎的Next-Key Locking机制在应用层面实现唯一性的检查。例如:

SELECT * FROM table WHERE col=xxx LOCK IN SHARE MODE;
# If not found any row:
# unique for insert value
INSERT INTO table VALUES (...);

如果用户通过索引查询一个值,并对该行加上一个S Lock,那么即使查询的值不在,其锁定的也是一个范围,因此若没有返回任何行,那么接下来新插入的值一定是唯一的。也许有读者会有疑问,如果在进行第一步SELECT …LOCK IN SHARE MODE操作时,有多个事务并发操作,那么这种唯一性检查机制是否存在问题。其实并不会,因为这时会导致死锁,只有一个事务的插入操作会成功,而其余的事务会抛出死锁的错误。

阻塞

因为不同锁之间的兼容性关系,在有些时刻一个事务中的锁需要等待另一个事务中的锁释放它所占用的资源,这就是阻塞。阻塞并不是一件坏事,其是为了确保事务可以并发且正常地运行。

在InnoDB存储引擎中,参数innodb_lock_wait_timeout用来控制等待的时间(默认是50秒),innodb_rollback_on_timeout用来设定是否在等待超时时对进行中的事务进行回滚操作(默认是OFF,代表不回滚)。参数innodb_lock_wait_timeout是动态的,可以在MySQL数据库运行时进行调整,而innodb_rollback_on_timeout是静态的,不可在启动时进行修改。

需要牢记的是,在默认情况下InnoDB存储引擎不会回滚超时引发的错误异常。其实InnoDB存储引擎在大部分情况下都不会对异常进行回滚(死锁除外)。如果发生了超时的情况,用户必须判断是否需要COMMIT还是ROLLBACK,之后再进行下一步的操作。

死锁

死锁是指两个或两个以上的事务在执行过程中,因争夺锁资源而造成的一种互相等待的现象。若无外力作用,事务都将无法推进下去。解决死锁问题最简单的方式是不要有等待,将任何的等待都转化为回滚,并且事务重新开始。毫无疑问,这的确可以避免死锁问题的产生。然而在线上环境中,这可能导致并发性能的下降,甚至任何一个事务都不能进行。而这所带来的问题远比死锁问题更为严重,因为这很难被发现并且浪费资源。

解决死锁问题最简单的一种方法是超时,即当两个事务互相等待时,当一个等待时间超过设置的某一阈值时,其中一个事务进行回滚,另一个等待的事务就能继续进行。在InnoDB存储引擎中,参数innodb_lock_wait_timeout用来设置超时的时间。

除了超时机制,当前数据库还都普遍采用wait-for graph(等待图)的方式来进行死锁检测。wait-for graph是一种较为主动的死锁检测机制,在每个事务请求锁并发生等待时都会判断是否存在回路,若存在则有死锁,通常来说InnoDB存储引擎选择回滚undo量最小的事务

锁升级

锁升级(Lock Escalation)是指将当前锁的粒度降低。举例来说,数据库可以把一个表的1000个行锁升级为一个页锁,或者将页锁升级为表锁。如果在数据库的设计中认为锁是一种稀有资源,而且想避免锁的开销,那数据库中会频繁出现锁升级现象。

InnoDB存储引擎不存在锁升级的问题。因为其不是根据每个记录来产生行锁的,相反,其根据每个事务访问的每个页对锁进行管理的,采用的是位图的方式。因此不管一个事务锁住页中一个记录还是多个记录,其开销通常都是一致的。

理论要掌握,实操不能落!以上关于《【MySQL—原理】锁》的详细介绍,大家都掌握了吧!如果想要继续提升自己的能力,那么就来关注golang学习网公众号吧!

声明:本文转载于:SegmentFault 如有侵犯,请联系study_golang@163.com删除
相关阅读
更多>
最新阅读
更多>
课程推荐
更多>
评论列表