如何优化多表查询情况下的查询性能问题
来源:SegmentFault
时间:2023-01-22 16:36:34 292浏览 收藏
在IT行业这个发展更新速度很快的行业,只有不停止的学习,才不会被行业所淘汰。如果你是数据库学习者,那么本文《如何优化多表查询情况下的查询性能问题》就很适合你!本篇内容主要包括如何优化多表查询情况下的查询性能问题,希望对大家的知识积累有所帮助,助力实战开发!
在实际开发过程中,使用例如 DDD领 域模型充血方案或者为了数据模型更加的便于之后的拓展和解释,不便于也不建议通过增加状态字段的方式解决问题,但同时上层业务有相对比较复杂,就会存在数据模型与业务要求之间的适配问题,复杂的业务可能提现在数据模型中需要用到多张表的联表查询情况,这类问题如何解决呢?
拆分方式
将原本一条SQL方式,查分为多步。多步可以是在SQL层面也可以是在程序层面。
有些业务情况是允许 通过多条SQL执行 的结果,在程序中进行拼装得到最终符合要求的结果集,在这里作者推荐尽可能在程序中处理,这样做的好处是减少数据库的压力。
也可以 借助其他缓存中间件 ,例如 redis 将一部分数据预先处理好,查询Redis性能肯定比数据库要好。
合并方式(读写分离)
预先将所需要的结果集以冗余方式存储下来,程序只需查询该冗余数据集合即可。
有的人会最先想到使用视图的方式去做,但了解视图的人都知道,每次查询视图数据,仍旧会执行联表SQL,不会起到性能提升效果。
使用 缓存表方式 ,以MySQL为例,MySQL 有提供缓存表的实现,将目标数据先缓存到缓存表中,再查缓存表中数据。
同步数据到ElasticSearch,查询 ElasticSearch 中的冗余数据 ,阿里 Canal 产品提供 MySQL 同步到 ElasticSearch 的实现,可以参考 Sync ES · alibaba/canal Wiki · GitHub。但该种方案往往存在延迟的问题,仅适合于对实时性有容忍度的场景中。
大数据 Spark / Flink 方式 ,以实时或者离线方式(实时性要求低)对多张目标表业务处理,持久化结果集,程序只需读取结果集中的数据。Flink 提供 Joining 方案,可以参考Apache Flink 1.11 Documentation: Joining。
分库分表+主从方式 ,例如多租户的场景,租户之间数据隔离,我们可以一主多从,一主用于写数据,多从分别根据租户拆分,各租户查询自己的从库。但该方案在程序实现方面会比较复杂,同时某个租户的数据量非常大还是会存在性能问题。
小结:该类方式往往是通过事件驱动方式实现,就会存在实时性和顺序问题,在选型的时候,需要考虑这方面的问题。以上提到的方案都仅仅适合联表查询相对简单的场景,如果存在子查询之类的复杂要求,就无法满足要求了。
本篇关于《如何优化多表查询情况下的查询性能问题》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于数据库的相关知识,请关注golang学习网公众号!
-
499 收藏
-
244 收藏
-
235 收藏
-
157 收藏
-
101 收藏
-
475 收藏
-
266 收藏
-
273 收藏
-
283 收藏
-
210 收藏
-
371 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 立即学习 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 立即学习 507次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 立即学习 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 立即学习 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 立即学习 484次学习