MySQL Query的优化
来源:SegmentFault
时间:2023-01-21 08:57:29 370浏览 收藏
对于一个数据库开发者来说,牢固扎实的基础是十分重要的,golang学习网就来带大家一点点的掌握基础知识点。今天本篇文章带大家了解《MySQL Query的优化》,主要介绍了MySQL,希望对大家的知识积累有所帮助,快点收藏起来吧,否则需要时就找不到了!
MySQL Query的优化
Query语句的优化思路和原则主要提现在以下几个方面:
1. 优化更需要优化的Query;
2. 定位优化对象的性能瓶颈;
3. 明确的优化目标;
4. 从Explain入手;
5. 多使用profile
6. 永远用小结果集驱动大的结果集;
7. 尽可能在索引中完成排序;
8. 只取出自己需要的Columns;
9. 仅仅使用最有效的过滤条件;
10.尽可能避免复杂的Join和子查询;
合理设计并利用索引
1)B-Tree索引
一般来说,MySQL中的B-Tree索引的物理文件大多都是以BalanceTree的结构来存储的,也就是所有实际需要的数据都存放于Tree的LeafNode,而且到任何一个LeafNode的最短路径的长度都是完全相同的,所以我们大家都称之为B-Tree索引当然,可能各种数据库(或MySQL的各种存储引擎)在存放自己的B-Tree索引的时候会对存储结构稍作改造。如Innodb存储引擎的B-Tree索引实际使用的存储结构实际上是B+Tree,也就是在B-Tree数据结构的基础上做了很小的改造,在每一个LeafNode上面出了存放索引键的相关信息之外,还存储了指向与该LeafNode相邻的后一个LeafNode的指针信息,这主要是为了加快检索多个相邻LeafNode的效率考虑。
2)Hash索引
Hash索引在MySQL中使用的并不是很多,目前主要是Memory存储引擎使用,而且在Memory存储引擎中将Hash索引作为默认的索引类型。所谓Hash索引,实际上就是通过一定的Hash算法,将需要索引的键值进行Hash运算,然后将得到的Hash值存入一个Hash表中。然后每次需要检索的时候,都会将检索条件进行相同算法的Hash运算,然后再和Hash表中的Hash值进行比较并得出相应的信息。
Hash索引仅仅只能满足“=”,“IN”和“”查询,不能使用范围查询;
Hash索引无法被利用来避免数据的排序操作;
Hash索引不能利用部分索引键查询;
Hash索引在任何时候都不能避免表扫面;
Hash索引遇到大量Hash值相等的情况后性能并不一定就会比B-Tree索引高;
3)Full-text索引
Full-text索引也就是我们常说的全文索引,目前在MySQL中仅有MyISAM存储引擎支持,而且也并不是所有的数据类型都支持全文索引。目前来说,仅有CHAR,VARCHAR和TEXT这三种数据类型的列可以建Full-text索引。
索引能够极大的提高数据检索效率,也能够改善排序分组操作的性能,但是我们不能忽略的一个问题就是索引是完全独立于基础数据之外的一部分数据,更新数据会带来的IO量和调整索引所致的计算量的资源消耗。
是否需要创建索引,几点原则:较频繁的作为查询条件的字段应该创建索引;唯一性太差的字段不适合单独创建索引,即使频繁作为查询条件;更新非常频繁的字段不适合创建索引;
不会出现在WHERE子句中的字段不该创建索引;
Join语句的优化
尽可能减少Join语句中的NestedLoop的循环总次数;“永远用小结果集驱动大的结果集”。
优先优化NestedLoop的内层循环;
保证Join语句中被驱动表上Join条件字段已经被索引;
当无法保证被驱动表的Join条件字段被索引且内存资源充足的前提下,不要太吝惜JoinBuffer的设置;
ORDER BY,GROUP BY和DISTINCT优化
1)ORDER BY的实现与优化
优化Query语句中的ORDER BY的时候,尽可能利用已有的索引来避免实际的排序计算,可以很大幅度的提升ORDER BY操作的性能。
优化排序:
1.加大max_length_for_sort_data参数的设置;
2.去掉不必要的返回字段;
3.增大sort_buffer_size参数设置;
2)GROUP BY的实现与优化
由于GROUP BY实际上也同样需要进行排序操作,而且与ORDER BY相比,GROUP BY主要只是多了排序之后的分组操作。当然,如果在分组的时候还使用了其他的一些聚合函数,那么还需要一些聚合函数的计算。所以,在GROUP BY的实现过程中,与ORDER BY一样也可以利用到索引。
3)DISTINCT的实现与优化
DISTINCT实际上和GROUP BY的操作非常相似,只不过是在GROUP BY之后的每组中只取出一条记录而已。所以,DISTINCT的实现和GROUP BY的实现也基本差不多,没有太大的区别。同样可以通过松散索引扫描或者是紧凑索引扫描来实现,当然,在无法仅仅使用索引即能完成DISTINCT的时候,MySQL只能通过临时表来完成。但是,和GROUP BY有一点差别的是,DISTINCT并不需要进行排序。也就是说,在仅仅只是DISTINCT操作的Query如果无法仅仅利用索引完成操作的时候,MySQL会利用临时表来做一次数据的“缓存”,但是不会对临时表中的数据进行filesort操作。
本篇关于《MySQL Query的优化》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于数据库的相关知识,请关注golang学习网公众号!
-
499 收藏
-
244 收藏
-
235 收藏
-
157 收藏
-
101 收藏
-
448 收藏
-
410 收藏
-
288 收藏
-
387 收藏
-
308 收藏
-
258 收藏
-
344 收藏
-
152 收藏
-
345 收藏
-
127 收藏
-
438 收藏
-
274 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 立即学习 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 立即学习 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 立即学习 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 立即学习 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 立即学习 484次学习