登录
首页 >  数据库 >  MySQL

MySQL 千万级数据表 partition 实战应用

来源:SegmentFault

时间:2023-02-16 15:19:41 239浏览 收藏

编程并不是一个机械性的工作,而是需要有思考,有创新的工作,语法是固定的,但解决问题的思路则是依靠人的思维,这就需要我们坚持学习和更新自己的知识。今天golang学习网就整理分享《MySQL 千万级数据表 partition 实战应用》,文章讲解的知识点主要包括MySQL、MySQL优化,如果你对数据库方面的知识点感兴趣,就不要错过golang学习网,在这可以对大家的知识积累有所帮助,助力开发能力的提升。

目前系统的 Stat 表以每天 20W 条的数据量增加,尽管已经把超过3个月的数据 dump 到其他地方,但表中仍然有接近 2KW 条数据,容量接近 2GB。

Stat 表已经加上索引,直接 select … where … limit 的话,速度还是很快的,但一旦涉及到 group by 分页,就会变得很慢。

据观察,7天内的 group by 需要 35~50s 左右。运营反映体验极其不友好。
于是上网搜索 MySQL 分区方案。发现网上的基本上都是在系统性地讲解 partition 的概念和种类,以及一些实验性质的效果,并不贴近实战。

通过参考 MySQL手册以及自己的摸索,最终在当前系统中实现了分区,因为记录一下。

分区类型的选择

Stat 表本身是一个统计报表,所以它的数据都是按日期来存放的,并且热数据一般只限于当天,以及7天内。所以我选择了 Range 类型来进行分区。

为当前表创建分区

因为是对已有表进行改造,所以只能用 alter 的方式:

ALTER TABLE stat
    PARTITION BY RANGE(TO_DAYS(dt)) (
        PARTITION p0 VALUES LESS THAN(0),
        PARTITION p190214 VALUES LESS THAN(TO_DAYS('2019-02-14')),
        PARTITION pm VALUES LESS THAN(MAXVALUE)
    );

这里有2点要注意:

一是 p0 分区,这是因为 MySQL(我是5.7版) 有个 bug,就是不管你查的数据在哪个区,它都会扫一下第一个区,我们每个区的数据都有几十万条,扫一下很是肉疼啊,所以为了避免不必要的扫描,直接弄个0数据分区就行了。

二是 pm 分区,这个是最大分区。假如不要 pm,那你存 2019-02-15 的数据就会报错。所以 pm 实际上是给未来的数据一个预留的分区。

定期扩展分区

由于 MySQL 的分区并不能自己动态扩容,所以我们要写个代码为它动态的增加分区。

增加分区需要用到

ALTER TABLE stat
    REORGANIZE PARTITION pm INTO (
        PARTITION p190215 VALUES LESS THAN(TO_DAYS('2019-02-15')),
        PARTITION pm VALUES LESS THAN(MAXVALUE)
    );

这里就涉及到一个问题,即如何获得当前表的所有分区?网上有挺多方法,但我试了下感觉还是先

ALTER TABLE stat DROP PARTITION p190214, p190215

以上就是本文的全部内容了,是否有顺利帮助你解决问题?若是能给你带来学习上的帮助,请大家多多支持golang学习网!更多关于数据库的相关知识,也可关注golang学习网公众号。

声明:本文转载于:SegmentFault 如有侵犯,请联系study_golang@163.com删除
相关阅读
更多>
最新阅读
更多>
课程推荐
更多>