登录
首页 >  数据库 >  MySQL

聊聊Spark DataFrame(附使用示例)

来源:SegmentFault

时间:2023-02-16 15:25:17 278浏览 收藏

积累知识,胜过积蓄金银!毕竟在##column_title##开发的过程中,会遇到各种各样的问题,往往都是一些细节知识点还没有掌握好而导致的,因此基础知识点的积累是很重要的。下面本文《聊聊Spark DataFrame(附使用示例)》,就带大家讲解一下MySQL、数据挖掘、apache-spark知识点,若是你对本文感兴趣,或者是想搞懂其中某个知识点,就请你继续往下看吧~

三月中旬,Spark发布了最新的1.3.0版本,其中最重要的变化,便是

DataFrame
这个API的推出。
DataFrame
让Spark具备了处理大规模结构化数据的能力,在比原有的RDD转化方式易用的前提下,计算性能更还快了两倍。这一个小小的API,隐含着Spark希望大一统「大数据江湖」的野心和决心。
DataFrame
像是一条联结所有主流数据源并自动转化为可并行处理格式的水渠,通过它Spark能取悦大数据生态链上的所有玩家,无论是善用R的数据科学家,惯用SQL的商业分析师,还是在意效率和实时性的统计工程师。

以一个常见的场景 -- 日志解析为例,有时我们需要用到一些额外的结构化数据(比如做IP和地址的映射),通常这样的数据会存在MySQL,而访问的方式有两种:一是每个worker远程去检索数据库,弊端是耗费额外的网络I/O资源;二是使用

JdbcRDD
的API转化为RDD格式,然后编写繁复的函数去实现检索,显然要写更多的代码。而现在,Spark提供了一种新的选择,一行代码就能实现从MySQL到
DataFrame
的转化,并且支持SQL查询。

实例

首先我们在本地放置了一个JSON文件,文件内容如下:

 {"name":"Michael"}
 {"name":"Andy", "age":30}
 {"name":"Justin", "age":19}

然后我们进入

spark-shell
,控制台的提示说明Spark为我们创建了一个叫
sqlContext
的上下文,注意,它是
DataFrame
的起点。
接下来我们希望把本地的JSON文件转化为
DataFrame

scala
scala> val df = sqlContext.jsonFile("/path/to/your/jsonfile")
df: org.apache.spark.sql.DataFrame = [age: bigint, name: string]

从控制台的提示可以得知,我们成功创建了一个

DataFrame
的对象,包含
age
name
两个字段。
DataFrame
自带的玩法就多了:

scala
// 输出表结构
df.printSchema()

// 选择所有年龄大于21岁的人,只保留name字段
df.filter(df("age") > 21).select("name").show()

// 选择name,并把age字段自增
df.select("name", df("age") + 1).show()

// 按年龄分组计数
df.groupBy("age").count().show()

// 左联表(注意是3个等号!)
df.join(df2, df("name") === df2("name"), "left").show()

此外,我们也可以把

DataFrame
对象转化为一个虚拟的表,然后用SQL语句查询,比如下面的命令就等同于
df.groupBy("age").count().show()

scala
df.registerTempTable("people")
sqlContext.sql("select age, count(*) from people group by age").show()

当然,Python有同样丰富的API(由于最终都是转化为

JVM bytecode
执行,Python和Scala的效率是一样的),而且Python还提供了类
Pandas
的操作语法。关于Python的API,可以参考Spark新年福音:一个用于大规模数据科学的API——DataFrame

MySQL

除了JSON之外,

DataFrame
现在已经能支持MySQL、Hive、HDFS、PostgreSQL等外部数据源,而对关系数据库的读取,是通过
jdbc
实现的。

对于不同的关系数据库,必须在

SPARK_CLASSPATH
变量中加入对应connector的jar包,比如希望连接
MySQL
的话应该这么启动
spark-shell

SPARK_CLASSPATH=mysql-connector-java-x.x.x-bin.jar spark-shell

下面要将一个MySQL表转化为

DataFrame
对象:

val jdbcDF = sqlContext.load("jdbc", Map("url" -> "jdbc:mysql://localhost:3306/your_database?user=your_user&password=your_password", "dbtable" -> "your_table"))

然后十八般武艺又可以派上用场了。

Hive

Spark提供了一个

HiveContext
的上下文,其实是
SQLContext
的一个子类,但从作用上来说,
sqlContext
也支持Hive数据源。只要在部署Spark的时候加入Hive选项,并把已有的
hive-site.xml
文件挪到
$SPARK_HOME/conf
路径下,我们就可以直接用Spark查询包含已有元数据的Hive表了:

scala
sqlContext.sql("select count(*) from hive_people").show()

结语

Spark的目标在于成为一个跨环境、跨语言、跨工具的大数据处理和分析平台。

DataFrame
的推出很好诠释了这一目标,从初步的使用来看确实很容易上手。随着性能和稳定性的持续优化,我相信某一天所有玩数据的人,都可以使用Spark作为惟一的平台入口。

来自:建造者说

今天关于《聊聊Spark DataFrame(附使用示例)》的内容介绍就到此结束,如果有什么疑问或者建议,可以在golang学习网公众号下多多回复交流;文中若有不正之处,也希望回复留言以告知!

声明:本文转载于:SegmentFault 如有侵犯,请联系study_golang@163.com删除
相关阅读
更多>
最新阅读
更多>
课程推荐
更多>