-
Spring事务失效的核心原因在于AOP代理机制未生效、传播行为配置不当或异常处理不正确。1.自调用问题导致代理失效,解决方式是分离方法到不同Service、注入自身代理或使用AopContext;2.事务传播行为需根据场景选择,如REQUIRED(默认)、REQUIRES_NEW或NESTED;3.回滚规则需明确指定rollbackFor,避免异常被吞导致回滚失败。
-
try-with-resources解决了资源泄露、代码冗余和异常处理不优雅三大痛点,1.它通过自动关闭实现AutoCloseable接口的资源,确保无论try块正常或异常结束,资源都会被可靠释放;2.它将资源声明与使用集中在try括号内,消除了繁琐的finally块,使代码更简洁清晰;3.当try块异常与close()异常同时发生时,close()异常会被作为被抑制异常添加到主异常中,保留完整异常信息;4.要使用该特性,资源类必须实现AutoCloseable接口并在close()方法中定义释放逻辑;5
-
在Java中操作量子密钥需通过集成QKD系统实现,而非直接编程生成。1.准备环境与依赖库:确认QKD设备是否提供JavaSDK或RESTAPI,引入Maven依赖或使用JNI/JNA调用C/C++接口。2.连接并获取量子密钥:通过SDK建立连接获取共享密钥,或使用模拟器生成密钥,注意真实场景中的同步与安全检测。3.使用密钥加密通信:如AES加密,构建SecretKeySpec并初始化Cipher进行数据加密,确保密钥长度匹配算法要求。4.注意事项与调试技巧:避免密钥重复使用,定期刷新;排查设备连接、密钥长
-
在Java中实现JSON与XML转换可通过Jackson和XStream库完成。1.使用Jackson时,需引入jackson-dataformat-xml依赖,先将JSON解析为Java对象,再通过XmlMapper转为XML;2.使用XStream可将XML转为JSON,借助JsonHierarchicalStreamDriver输出近似JSON格式,但需注意其非标准性;3.转换中常见问题包括结构不一致、信息丢失、类型错误等,建议设计映射规则、避免深层嵌套、进行前后校验;4.JSON相较XML更简洁、
-
饿汉式在类加载时创建实例,线程安全但不支持懒加载;2.懒汉式在首次调用时创建实例,支持懒加载但线程不安全;3.线程安全的懒汉式通过synchronized实现线程安全和懒加载,但性能较低;4.双重检查锁通过volatile和同步块实现高效线程安全与懒加载,实现较复杂;5.静态内部类利用类加载机制实现线程安全和懒加载,推荐使用;6.枚举实现线程安全且防止反射和序列化攻击,但不支持懒加载;防御反射攻击可在构造方法中检查实例是否存在并抛出异常,枚举单例天然防止反射攻击;单例模式通过类加载机制或同步手段保证多线程
-
ProGuard的核心能力有四个:Shrinking移除未使用的类、字段、方法和属性,Optimizing优化字节码提升运行效率,Obfuscating用简短无意义的名字混淆代码,Preverifying添加预校验信息;实际项目中通过构建工具如Gradle集成ProGuard,并在build.gradle中配置开启混淆及指定规则文件;proguard-rules.pro中使用-keep指令保留特定类和方法不被混淆,例如Activity、Service、反射调用类、native方法、枚举类等;混淆的作用包括
-
Java中ProtocolBuffer的序列化性能优化核心在于“少即是多”,通过减少不必要的开销提升效率。1.合理设计消息结构,选择合适的数据类型(如int32代替int64)、避免深度嵌套、使用oneof表示互斥字段,并优先为高频字段分配小编号;2.复用CodedOutputStream和CodedInputStream等关键对象,降低GC压力;3.利用ByteString实现零拷贝,减少内存复制;4.采用批量处理和缓存机制,减少重复序列化操作;5.结合JVM调优手段,如调整堆大小或垃圾回收器,整体提升
-
本文旨在提供一种高效且易于理解的方法,用于判断一个整数数组中的所有元素是否都是回文数。我们将探讨如何将整数转换为字符串,并利用字符串的特性来快速进行回文数校验,最终实现一个简洁的函数,用于判断整个数组是否满足回文条件。
-
在Java中实现网络下载速率控制,其核心思路在于对数据流的传输过程进行精细的节流。这通常意味着在读取或写入数据块之间,根据预设的速率目标,引入适当的延迟。简单来说,就是每次处理完一部分数据后,计算一下按照目标速度本该用多少时间,如果实际用时短了,那就让线程稍微暂停一下,直到时间对上为止,从而达到稳定下载速度的目的。解决方案要实现Java的网络限速下载功能,我们主要通过控制每次数据读取后的等待时间来达成目标。这需要我们跟踪已经传输的数据量以及所花费的时间,然后根据目标速率动态地调整读写节奏。以下是一个基本的
-
在Java中进行Base64编码传输的核心在于使用java.util.Base64类提供的Encoder和Decoder。1.使用Base64.getEncoder()进行标准编码,Base64.getUrlEncoder()用于URL安全编码,Base64.getMimeEncoder()用于MIME类型编码;2.解码统一使用Base64.getDecoder(),能自动识别不同编码格式;3.字符编码需统一,推荐使用StandardCharsets.UTF_8,避免乱码;4.大文件应使用流式处理,通过B
-
本文深入探讨了如何在不依赖传统索引迭代的情况下,通过递归方式查找整数数组中的最大值。核心策略是利用数组复制技术在每次递归调用中创建一个更小的子数组,并通过比较当前元素与子数组的最大值来逐步逼近最终结果。文章提供了详细的Java代码示例,并解析了其工作原理,旨在帮助读者掌握递归解决复杂问题的思路。
-
检测Java中文件是否存在的核心方法是使用java.io.File类的exists()方法。1.首先创建File对象并调用exists()方法,返回true表示文件存在,false表示不存在;2.使用相对路径或绝对路径均可,相对路径相对于当前工作目录,绝对路径从根目录开始;3.即使文件存在,仍需通过canRead()和canWrite()检查读写权限,避免因权限不足导致访问失败。该方法广泛应用于文件读取、写入和删除操作前的存在性与权限验证,确保程序稳定运行。
-
Java内存模型(JMM)是多线程编程的基础,其核心在于主内存与工作内存的划分及三大特性(原子性、可见性、有序性)。1.主内存存储变量,线程通过工作内存操作变量副本,通信需同步机制避免可见性问题;2.线程安全依赖原子性(如synchronized或AtomicInteger保障)、可见性(volatile确保读写主内存)、有序性(volatile和synchronized禁止重排序);3.happens-before规则定义操作间可见关系,包括程序顺序、锁、volatile变量、线程启动与终止等规则;4.
-
GuavaCache是一个适合中小型Java项目的本地缓存实现。1.它提供自动加载、过期策略、大小限制等功能;2.使用简单,API简洁,无需引入外部服务;3.支持基于时间与访问的过期机制、条目数量或权重控制、统计信息及异步刷新;4.创建时通过CacheBuilder构建实例并配置策略;5.可结合Spring的@Cacheable注解提升开发效率;6.不适合大数据量或跨JVM场景。
-
本文档详细介绍了如何基于HashMap中自定义类的成员变量值进行排序。由于HashMap本身无序,且TreeMap基于Key排序,因此需要借助LinkedHashMap和StreamAPI或传统方式实现按值排序。文章提供了具体的代码示例,展示了如何利用sorted(),collect()和LinkedHashMap来实现所需功能,并强调了排序后更新Map可能导致顺序错乱的注意事项。