-
生成器是含yield的函数返回的迭代器对象,调用不执行而返回generator实例,next()或for循环触发执行;每次yield暂停并保存状态,return则终止并抛出StopIteration。
-
Pandas数据聚合核心是groupby,需明确分组依据(单列、多列或条件)、聚合方式(内置方法或agg自定义)及结果处理(重置索引、展平列名),并注意空值处理、类型安全与性能优化。
-
Python项目结构无统一标准,需依场景权衡:小工具可省src/,发布项目推荐src/并配置package_dir;__init__.py建议显式添加以支持IDE和类型检查;配置应分环境、敏感信息走环境变量,避免硬编码路径。
-
使用openpyxl可高效读写Excel文件,支持样式、日期处理及大型文件优化。首先通过pipinstallopenpyxl安装库;创建文件时用Workbook()生成工作簿,通过sheet.append()或cell(row,col)写入数据,并调用save()保存;读取文件使用load_workbook()加载,遍历iter_rows()获取数据;处理大文件时启用read_only=True或write_only=True模式以降低内存占用;设置字体、填充、边框和对齐方式可实现丰富样式;日期时间数据会
-
数据标注需用LabelImg或CVAT标出目标框和类别,统一命名并生成.xml或.json文件;数据组织按YOLO、FasterR-CNN、TensorFlow要求转为对应格式;训练推荐YOLOv8或FasterR-CNN,注意学习率、增强与早停;部署需导出ONNX,用ORT/TensorRT加速,再封装API服务。
-
在Polars中,mean()默认不自动忽略NaN,需显式调用drop_nans()或fill_nan(None)才能获得与Pandas一致的NaN安全均值结果;推荐优先使用drop_nans().mean(),语义清晰且性能优秀。
-
Python处理日期时间最常用datetime和time模块:datetime面向人类可读时间,支持创建、格式化、解析及加减;time更底层,用于时间戳、睡眠和性能计时;二者可协作转换,需注意时区和naive/aware对象区别。
-
__str__用于生成人类可读的字符串,适合展示给用户;__repr__则生成明确无歧义的开发者用字符串,理想情况下可重构对象。两者分工明确,建议优先定义__repr__以保障调试信息完整,再根据需要定义__str__提供友好显示。若只选其一,应优先实现__repr__。
-
最常用的方法是使用piplist命令列出当前Python环境中已安装的所有第三方库及版本;可配合--format、grep/findstr等参数实现简洁显示或指定库检查,并需注意虚拟环境与Python版本对应关系。
-
企业应用中模型部署的核心是将训练好的模型转化为稳定、可调用、可监控的服务,需兼顾性能、安全、更新与协作;关键步骤包括模型标准化(统一格式、剥离训练依赖、本地验证)、API封装(FastAPI、清晰协议、基础防护)、容器化编排(Docker精简镜像、K8s弹性管理)及可观测运维(多层指标监控、结构化日志、灰度更新闭环)。
-
Python的warnings模块用于发出非致命警告,不能用try/except捕获;需用filterwarnings、simplefilter忽略,catch_warnings(record=True)临时捕获,或通过-W参数及PYTHONWARNINGS环境变量控制。
-
可变对象创建后可修改内容而不改变内存地址,如列表、字典;不可变对象一旦创建内容不可变,任何修改都会生成新对象,如整数、字符串、元组。
-
Python函数测试核心是覆盖关键路径而非追求行数,需明确函数责任边界、测试三类输入场景,并用pytest-cov验证覆盖质量,避免假覆盖陷阱。
-
最简单的方法是使用字符串格式化或tabulate库。1.用str.ljust()等手动对齐列;2.安装并使用tabulate库输出美观表格,支持grid等样式;3.用pandasDataFrame打印结构化数据,适合数据分析。小项目可选手动方式,推荐tabulate实现清晰终端表格。
-
Python操作数据库需遵循DB-API规范,核心是连接管理、SQL执行、参数化查询和事务控制;SQLite用?占位符,MySQL/PostgreSQL用%s,均须防SQL注入并合理提交事务。