-
Python字典是程序内可变数据结构,支持多种类型;JSON是跨语言数据交换格式,仅支持基础类型。1.字典支持任意Python类型(如列表、元组、None),JSON只支持字符串、数字、布尔、null、数组和对象。2.字典键可用单/双引号,JSON必须用双引号;JSON布尔值为小写true/false,空值为null。3.字典用于内部数据操作,JSON用于系统间数据传输,如API通信。4.使用json.dumps()将字典转为JSON字符串,json.loads()将JSON字符串解析为字典。5.字典可动
-
使用requirements.txt可实现Python项目依赖的一键安装,首先通过pipfreeze>requirements.txt导出依赖,建议仅保留直接依赖并规范版本控制符如==、>=、~=,然后用户可通过pipinstall-rrequirements.txt在虚拟环境中一键安装,推荐结合虚拟环境避免冲突,新项目也可采用pyproject.toml声明依赖以实现现代化打包方式。
-
在Pytest单元测试中,当被测试代码尝试通过logging.basicConfig()配置并写入日志文件时,可能会因Pytest内置的日志插件干扰而导致文件创建失败。本文将深入探讨这一常见问题,解释其根本原因,并提供一个简单有效的解决方案:通过在运行Pytest时禁用其内置日志插件,确保被测模块的日志配置能够正确生效,从而实现日志文件的正常创建和测试。
-
Python深度学习GPU加速核心是确保模型、数据、计算三者统一在CUDA设备上;需先验证GPU可用性,再手动迁移张量,配合混合精度、合理batchsize及避免隐式CPU切换以提升效率。
-
高效入门NLPAPI的关键是从真实需求出发,用最小成本调通接口再逐步扩展:先明确问题(如实体识别、情感分析、文本摘要),选对应API,四步完成首次调用,排查失败原因,最后添加重试、超时、日志等防护机制。
-
glob模块用于匹配文件路径名,支持通配符如、?、[abc]和*(配合recursive=True实现递归),可快速查找指定模式的文件,返回字符串列表,常用作文件批量处理。
-
Python的int类型可以处理任意精度的整数。1)它能轻松处理非常大的数值,如10**100。2)整数除法使用//,如7//3结果为2。3)但在大量整数运算时,使用NumPy库更高效。
-
数据清洗关键在于精准识别与处理脏数据,需结合分布分析与业务规则校验、统一格式、少删多推并留痕、用模型反推验证效果,且须持续迭代。
-
PyCharm是一款适合专业Python开发的IDE,其优点包括强大的代码补全、导航、调试功能和代码分析能力,但缺点是资源消耗高,学习曲线陡峭,且专业版需付费。
-
零宽断言是正则表达式中的“条件判断”,用于检查某位置前后是否满足规则但不匹配字符本身。它常用于提取特定格式文本、精确匹配词语和替换符合条件的内容,如用(?<=OrderID:)\d+提取订单号、用(?<!\w)book(?! \w)匹配独立单词“book”、以及用(?!https?://)\bwww.\S+替换非完整链接。使用时需注意:部分语言如JavaScript对lookbehind支持有限、可能影响性能、逻辑顺序需准确。
-
Python打印直角三角形需控制星号数量与空格数:左下用foriinrange(1,n+1)打印""i;左上用range(n,0,-1);右下每行打印""(n-i)+""*i(i从1到n);右上同理i从n到1;while循环可辅助理解逐行构建过程。
-
静态分析三步法:先用flake8检查PEP8风格和硬性错误,再用pylint深入分析逻辑与结构;接着用mypy做类型检查捕获运行时错误;最后用radon和vulture识别高复杂度与无用代码以指导安全重构。
-
Python数据结构学习关键不在讲数而在实操:list的in操作为O(n)全扫描,10万元素最坏比较10万次;set查重O(1)但需构建开销,小列表偶尔查询未必划算。
-
处理百万级数据集关键在于选对工具和策略:用chunksize分块读取、dtype/usecols压缩内存、Dask/Polars替代Pandas、转存Parquet提升IO效率。
-
类方法用@classmethod装饰,参数为cls,可访问类变量;静态方法用@staticmethod装饰,无默认参数,仅为命名空间工具函数;误用会导致子类不兼容或冗余传参。