-
调用函数时需先传位置参数再传关键字参数,否则报错;2.避免使用可变对象作为默认参数,应使用None并在函数内初始化;3.args收集多余位置参数为元组,kwargs收集多余关键字参数为字典,参数顺序必须为普通参数→args→kwargs;4.Python参数传递为对象引用传递,修改可变对象会影响原对象,需使用copy()或[:]创建副本以避免副作用。
-
Python作用域遵循LEGB规则,但赋值会强制声明局部变量,导致UnboundLocalError;for循环不创建作用域而推导式会;nonlocal/global是绑定重定向而非访问开关;类体是独立作用域,方法内不可直接访问类变量。
-
PythonNLP模型微调核心是任务对齐、数据适配与训练可控:优先选用HuggingFace成熟中文模型(如bert-base-chinese、ChatGLM3),标准化数据格式并处理长度与切分,小样本用LoRA、常规用全参微调+warmup学习率,最后闭环验证指标并转ONNX/GGUF部署。
-
关键在于找准学习路径和实践节奏:明确小目标建立正向反馈、通过调试真实代码强化理解、掌握模型设计逻辑而非死磕数学、将AI嵌入已有技能解决实际问题。
-
时间序列预测API的核心是可集成、可维护、可回溯,需标准化预处理、轻量模型封装、带置信区间返回、支持增量更新与冷启动兜底。
-
流式下载内存暴涨需用stream=True+分块读取+及时写入:设stream=True避免全响应体进内存;用iter_content(chunk_size)边读边写二进制文件;校验状态码、重定向及Content-Length;设timeout并捕获异常。
-
Python类设计核心是单一职责,即每个类只做一件事并做好;职责边界指类应承担的行为与数据范围,需通过影响范围、存储替换成本和测试便捷性三问判断;常见越界行为包括模型类发HTTP请求、业务类生成HTML、硬编码日志监控等,应拆分服务、分离数据与展示、用装饰器或中间件解耦;可用Protocol或ABC声明依赖协议,优先组合而非继承以增强灵活性与可测性。
-
本文介绍使用pandas的str.split()与explode()方法,高效、安全地将DataFrame中多个字符串型列表列(如"MS"和"DS")按元素一一配对展开为长格式,自动处理长度不一致时的填充(如补NaN)。