-
PyCharm安装的库文件存储在系统的Python安装目录中,由pip管理。具体位置包括:1.Windows:C:\Users\你的用户名\AppData\Local\Programs\Python\PythonXX\Lib\site-packages;2.macOS/Linux:/usr/local/lib/pythonX.Y/site-packages或/Library/Frameworks/Python.framework/Versions/X.Y/lib/pythonX.Y/site-packag
-
答案是使用包管理器安装最简便,如Ubuntu用sudoaptinstallpython3,Fedora用sudodnfinstallpython3,也可从源码编译或用pyenv管理多版本。
-
Python函数学习关键在理解def、lambda、闭包、装饰器、作用域和调用栈五大机制,而非虚构的“第245讲”;def创建function对象,lambda仅支持表达式,装饰器失效多因调用时机或返回错误,闭包自由变量存在晚绑定陷阱。
-
网页数据爬取需兼顾质量、结构、合规与工程性:明确任务需求→遵守robots.txt与隐私规范→依页面类型选requests/Playwright→结构化保存为JSONL等训练友好格式→抽样核验、SimHash去重、过滤低质页。
-
Python网络容错设计核心是预判异常、分层捕获、有状态重试与失败降级;需区分连接类(可重试)、客户端错误(不可重试)和服务端错误(选择性重试),配合指数退避抖动、状态持久化、幂等保障及合理超时熔断。
-
Python读写二进制文件需用bytes(不可变)和bytearray(可变)类型,open()必须使用'b'模式(如'rb'、'wb'),bytes支持切片索引但不可修改,bytearray支持原地编辑,适合高效修改字节数据。
-
答案:Python中使用math模块进行三角函数计算,需先将角度转换为弧度。1.math.sin、cos、tan等函数接收弧度参数,可用math.radians和math.degrees转换单位;2.计算30度正弦值需先转弧度,结果为0.5000;3.π/4弧度等于45.0度;4.解直角三角形时,对边=斜边×sin(角),45度、斜边10得对边7.0711;5.注意输入为数字,反三角函数输入范围[-1,1],避免浮点误差。
-
使用json.dumps并设置indent参数可格式化JSON输出,提升可读性;通过indent指定缩进空格数,sort_keys=True确保键有序,separators压缩体积,ensure_ascii=False支持中文显示。
-
Python字典通过键访问值,使用[]直接访问若键不存在会抛出KeyError,而get()方法可安全访问并返回默认值,推荐在不确定键存在时使用get()。
-
Python接口缓存需按场景选策略:本地缓存适用于高频读低更新场景,Redis适合多实例共享,HTTP缓存用于静态响应;须精准设计缓存键、防范穿透雪崩击穿,并加强可观测性与降级能力。
-
视频分类不能直接用图像模型,因为视频是带时间顺序的图像序列,单帧丢失动作、节奏、运动轨迹等关键信息;需显式建模帧间依赖,主流方法有双流网络、3D卷积和Transformer时序建模。
-
Python处理JSON和XML需先统一数据模型:JSON用json模块解析并安全取值、类型转换;XML优选ElementTree或lxml,注意命名空间与混合内容;双向转换推荐dicttoxml/xmltodict;校验用jsonschema或XSD,异常需统一捕获记录。
-
Python内存管理核心是理解对象生命周期、引用计数与垃圾回收协同机制;变量是标签而非容器,id()返回内存地址,循环引用需gc模块清理,可用tracemalloc和objgraph排查泄漏。
-
先确认显卡驱动支持的CUDA版本,再通过conda或pip安装匹配的框架和cudatoolkit;使用独立虚拟环境避免依赖冲突,确保PyTorch/TensorFlow的CUDA版本与系统一致,可解决GPU无法调用、导入报错等问题。
-
多线程不加速AI训练,反而可能拖慢;应优先用多进程或DataLoader并行;仅将日志、监控、IO等非GPU任务放线程,注意锁保护共享变量和正确关闭线程池。