-
转型AI方向的核心是建立“问题—数据—模型—落地”闭环思维,从能跑通的项目入手(如scikit-learn客户流失预测、HuggingFace微调、LangChain问答机器人),三天内获得正反馈;重点补足数据清洗、标签质量、小数据方法三大断层;善用原有工程能力叠加AI,而非归零重学。402 收藏 -
SQLAlchemy推荐使用Core的insert().returning()实现跨数据库插入后返回自增ID,PostgreSQL原生支持,MySQL8.0.19+配合新驱动也支持;ORM则通过session.flush()后直接读取主键。213 收藏 -
Python变量是动态绑定的标签而非盒子,核心数据类型有int、float、str、bool、NoneType和list六种;可用type()查看类型,用int()、str()等显式转换,需注意命名规则、类型区别及常见陷阱。148 收藏 -
推荐方式是用pip安装,需先确认Python3.5.x和pip版本;若环境变量未配置,可用python-mpipinstallnumpy;多版本共存时建议用pip3或python-mpip;遇权限问题加--user,网络慢可换清华源,Python3.5需安装numpy<1.19。111 收藏 -
Pygal是一个轻量级的Python图表库,适合生成SVG格式的可视化图表。1.它支持多种图表类型如柱状图、折线图、饼图等;2.通过pipinstallpygal可安装基础库,若需GUI展示还需安装pygaljs和webview;3.使用简洁API可快速生成图表并保存为SVG文件;4.结合webview可在独立窗口中展示图表;5.注意其适用于静态或低频更新场景,不适合高频动态绘制。439 收藏 -
导入math模块后可通过math.pi获取π值;2.math.pi是精度约15位的浮点常量,可直接用于计算如圆面积;3.必须先导入importmath,否则会报NameError。317 收藏 -
Python协程中阻塞调用危险,因会卡住单线程事件循环,使所有协程无法调度;应改用asyncio.sleep、aiohttp等异步替代方案,并启用debug模式预警。203 收藏 -
PythonAI工程核心能力分四层:数据处理强调可控可追溯;模型需可解释、能调试梯度;训练过程须实时监控异常;部署重在控制输入与环境边界。116 收藏 -
装饰器本质是函数替换,定义时(def执行完)立即运行,非调用时;带参装饰器需三层结构;类装饰器适合需状态隔离或扩展的场景。486 收藏 -
使用from...import...可导入模块中特定函数,如frommathimportsqrt直接调用sqrt(16);可导入多个函数用逗号分隔;为避免命名冲突可用as重命名;不推荐frommoduleimport*,因其污染命名空间。369 收藏 -
自定义异常类需继承Exception类,可添加错误码等属性,通过raise抛出并用try-except捕获,提升错误处理的可读性和维护性。243 收藏 -
推荐直接使用asyncio.PriorityQueue实现优先级队列,它是标准库中线程安全、协程友好的内置类,基于heapq自动排序,支持await,优先级数值越小越先执行;避免手动维护排序。411 收藏 -
KerasLSTM在单次预测时明显慢于PyTorch,主因是误用model.predict()循环调用而非批量model()调用;PyTorch若混用NumPy也会严重拖慢。正确使用张量接口可将Keras推理延迟降低10倍以上。446 收藏 -
本文详解如何用Python切片操作精准提取并反转字符串末尾4个字符,包括正向/负向索引用法、常见错误分析及健壮性处理方案。368 收藏 -
Python处理时区应区分naive与aware时间,优先用zoneinfo(Python3.9+)创建感知时间,跨时区转换必用astimezone(),运算需统一时区类型,存储和传递推荐标准化为UTC。219 收藏